UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍA

Programa académico:	Ingeniería de Manufactura
Asignatura:	Diseño de Herramientas y Herramentales
Código:	IMFI23
Área o nodo de formación:	Procesos CAD CAE
Año de actualización:	Semestre I de 2022
Semestre:	9
Tipo de asignatura:	Teórico-Práctica
Número de créditos:	4
Total horas:	4
Profesores:	
Director:	Ricardo Acosta

1. Breve descripción

Como una constante en la industria metalmecánica, los fabricantes y proveedores de productos se esfuerzan por reducir tiempos de diseño y fabricación, con la consiguiente reducción del costo del producto final. Unas de las variables más importantes en la calidad y costo del producto final, están asociadas al rendimiento, durabilidad y funcionalidad de las herramientas y herramentales o utillajes. El diseño y fabricación de herramientas y herramentales presenta muchos retos y desafíos al ingeniero, dada la amplia gama de necesidades funcionales, materiales, diseños, procesos de fabricación, etc., y la elección de una solución óptima.

El presente curso aplica los conceptos de diseño de herramientas y herramentales viables para su producción y desarrollo desde la ingeniería, empleando el uso de herramientas CAD/CAE convencionales.

2. Objetivos

Objetivos del programa

- · Formar al estudiante en el diseño para la fabricación, selección, mantenimiento y montaje de máquinas y elementos de máquinas con énfasis en máquinas-herramienta.
- · Formar al estudiante en el modelado, simulación y validación de los diseños de productos y procesos, teniendo en cuenta la fabricación bajo enfoques PLM.
- · Promover en el estudiante una formación integral con pensamiento crítico y reflexivo que le permita desempeñarse con idoneidad, humanismo y sentido ético.
- · Formar al estudiante para la selección, caracterización, tratamiento y recubrimiento de materiales de ingeniería.

Objetivos de la asignatura

- · Diseñar plantillas para ensamblaje, medición y verificación.
- · Establecer una metodología para el diseño de herramientas de corte.
- · Modelar y simular diseños de herramientas y herramentales, con la asistencia de herramientas CAD/CAE

3. Resultados de aprendizaje

Resultados de aprendizaje del programa

- · Seleccionar, integrar y/o diseñar los procesos de manufactura adecuados para un propósito en particular, teniendo en cuenta los recursos actuales y/o definiendo los nuevos recursos a adquirir.
- · Modelar y simular procesos de manufactura, máquinas y equipos aplicando conocimientos la mecánica de sólidos, termodinámica, transferencia de calor y mecánica de fluidos para satisfacer las necesidades de la industria.

Resultados de aprendizaje de la asignatura

- · Definir y aplicar criterios de selección de un material para la fabricación de diferentes tipos de herramientas.
- · Implementar con la ayuda de herramientas computacionales existentes y lenguajes de programación, modelos de fabricación de herramientas y herramentales.
- De entre varias alternativas de fabricación de herramientas y herramentales, y con base a planteamientos técnico-económicos, seleccionar una solución idónea para atender una necesidad particular.

4. Contenido

Capítulo 1. INTRODUCCIÓN (4 h)

Consideraciones generales en el diseño de herramental: trilogía máquina – herramental y herramienta – material. Repaso de las propiedades mecánicas de los materiales metálicos y no metálicos. Importancia de los acabados superficiales, dimensionales y geométricos de las piezas de trabajo. Breve repaso sobre instrumentos de medición y verificación. Breve repaso de sistemas y tipos de ajustes.

Capítulo 2. DISEÑO DE DISPOSITIVOS DE SUJECIÓN (*FIXTURES*) (8 h) Descripción y análisis del método de posicionamiento. Normas y reglas fundamentales para el diseño de dispositivos de sujeción. Diseño de dispositivos de posicionamiento (centrado y cierre). Diseño de dispositivos para el centrado de fijación de la pieza de trabajo. Diseño de dispositivos de fijación elástica.

Capítulo 3. DISEÑO DE PLANTILLAS (JIG) DE ENSAMBLE, MEDICIÓN Y VERIFICACIÓN (6 h)

Diseño y construcción de verificadores para contornos exteriores, simples y especiales. Diseño y construcción de verificadores para contornos interiores, simples y especiales. Descripción y análisis del límite de desgaste de las plantillas.

Capítulo 4. DISEÑO DE HERRAMIENTAS DE CORTE (8 h)

Breve repaso sobre herramientas de corte y su clasificación. Breve repaso de los factores que influyen en el rendimiento de las herramientas de corte. Análisis teórico del desgaste y corrección de las herramientas de corte. Diseño y construcción de herramientas de una arista de corte. Diseño y construcción de herramientas multifilo.

Capítulo 5. DISEÑO DE TROQUELES (8 h)

Clasificación, descripción y funcionamiento del troquel. Elementos que constituyen un troquel. Materiales y tratamientos térmicos para troqueles. Diseño y construcción de un troquel de corte. Diseño y construcción de un troquel especial (para doblar, curvar, enrollar, formar cuellos, etc.).

Capítulo 6. DISEÑO DE MATRICES PARA ESTAMPADO Y EMBUTIDO (6 h) Repaso de las características del equipamiento empleado en estampado y embutido. Diseño y construcción de una matriz de estampado. Diseño y construcción del juego de plantillas para la fabricación de la matriz de estampado. Descripción y análisis de las características de operación de una matriz para embutido. Diseño y construcción de una matriz para embutido.

Capítulo 7. DISEÑO DE HERRAMENTAL PARA UNIONES ATORNILLADAS, REMACHADAS Y SOLDADAS (4 h)

Descripción y análisis de las características principales de un dispositivo de montaje. Descripción, análisis y diseño de un dispositivo de montaje simple con accionamiento mecánico. Descripción, análisis y diseño de un dispositivo de montaje universal con accionamiento mecánico, hidráulico, o neumático.

Capítulo 8. DISEÑO DE MOLDES PARA FUNDICIÓN A PRESIÓN (8 h)

Descripción y análisis de las principales características de diseño para moldes de fundición a presión. Descripción y análisis de los principales sistemas de operación de la máquina. (Cierre, calentamiento, lubricación, etc.). Diseño de moldes para fundición a presión.

Capítulo 9. DISEÑO DE MOLDES PARA INYECCIÓN DE PLÁSTICOS (8 h) Análisis de las principales propiedades de los plásticos para su moldeo. Descripción y análisis de las características de diseño para la fabricación de moldes. Diseño de moldes para la fabricación de piezas de plástico por: inyección, compresión, soplado y formado de vacío.

5. Requisitos

IMFG63. Diseño con Herramientas Computacionales CAE.

6. Recursos

Video tutoriales, Presentaciones, Laboratorio de Resistencia de Materiales, Taller de Máquinas y Herramientas, Salas de cómputo, Aulas de clase, Tutoriales

Bibliografía:

- [1] Altan, T., Ngaile, G., Shen, Gangshu. Cold and Hot Forging: Fundamentals and Applications. ASM International, Ohio, 2005. ISBN: 0-87170-805-1. www.asminternational.org.
- [2] Altan, T., "Short Course on Near Net Shape Cold, Warm and Hot Forging Without Flash," Engineering Research Center for Net Shape Manufacturing, The Ohio State University, 2002.
- [3] Kalpakjian, S., Schmid, S., Manufacturing Engineering and Technology, Prentice Hall, 2001. [4] SME Handbook, 1989, Tool and Manufacturers Engineering Handbook, Desk Edition (1989), 4th ed., Society of Manufacturing Engineers, 1989, p 15-8.
- [5] Douglas, J. R., & Altan, T. (1975). Flow Stress Determination for Metals at Forging Rates and Temperatures. Journal of Engineering for Industry, 97(1), 66. doi:10.1115/1.3438593 [6] Tufekci, S. S., Ahmetoglu, M. A., Kinzel, G., & Altan, T. (1995). Process Simulation for Can Manufacturing by Deep Drawing and Ironing. SAE Technical Paper Series. doi:10.4271/950696. [7] Revista Forgings, www.forgingmagazine.com
- [8] https://www.forgemag.com/articles/83781-comparative-analysis-of-forging-presses [9] Montilla Montaña, C. A. Calle Trujillo, G. Moreno Ortiz, Y. Procesos de mecanizado. Teoría y práctica. Editorial Universidad Tecnológica de Pereira. 2022.

7. Herramientas técnicas de soporte para la enseñanza

- 1) Utilización de ejercicios tipo de cada tema.
- 2) Estudio de casos aplicados.
- 3) Tutoriales.
- 4) Exposiciones orales
- 5) Análisis de la información
- 6) Proyecto Final

8. Trabajos en laboratorio y proyectos

Prácticas de laboratorio relacionados con los temas expuestos en el contenido, Requieren de una explicación de tipo demostrativo antes de la práctica de laboratorio

9. Métodos de aprendizaje

Consultas en la web, Consultas en material bibliográfico, Clases teóricas, Clases prácticas, Seminarios Talleres, Prácticas externas, Tutorías, Estudio y trabajo en grupo, Estudio y trabajo autónomo e individual, Se usará la metodología basada en los resultados realizando una verificación de los logros alcanzados en cada capítulo y del proceso total.

10. Evaluación

Exámenes parciales, Examen Final, Informes escritos de cada una de las prácticas de laboratorio., Tareas de seguimiento, Proyecto final